Optical Hall effect in strained graphene
نویسندگان
چکیده
منابع مشابه
Fractional quantum Hall effect in strained graphene: stability of Laughlin states in disordered (pseudo)magnetic fields
متن کامل
Quantum Hall effect in graphene
The quantum Hall (QH) effect in two-dimensional electron and hole gas is studied in high quality graphene samples. Graphene samples whose lateral size∼10 μmwere fabricated into mesoscopic devices for electrical transport measurement in magnetic fields. In an intermediate field range of up to 10 T, a distinctive half-integer QH effect is discovered with QH plateaus appearing at a filling factor ...
متن کاملOptical spin hall effect.
A remarkable analogy is established between the well-known spin Hall effect and the polarization dependence of Rayleigh scattering of light in microcavities. This dependence results from the strong spin effect in elastic scattering of exciton polaritons: if the initial polariton state has a zero spin and is characterized by some linear polarization, the scattered polaritons become strongly spin...
متن کاملQuantum spin Hall effect in graphene.
We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supp...
متن کاملQuantum Hall effect in twisted bilayer graphene.
We address the quantum Hall behavior in twisted bilayer graphene transferred from the C face of SiC. The measured Hall conductivity exhibits the same plateau values as for a commensurate Bernal bilayer. This implies that the eightfold degeneracy of the zero energy mode is topologically protected despite rotational disorder as recently predicted. In addition, an anomaly appears. The densities at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: 2D Materials
سال: 2017
ISSN: 2053-1583
DOI: 10.1088/2053-1583/aa5f8b